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Abstract—To model nonlinear device behavior at microwave fre-
quencies, accurate large-signal models are required. However, the
standard procedure to estimate model parameters is often cum-
bersome, as it involves several measurement systems (dc, vector
network analyzer, etc.). Therefore, we propose a new nonlinear
modeling technique, which reduces the complexity of the model
generation tremendously and only requires full two-port vectorial
large-signal measurements. This paper reports on the results ob-
tained with this new modeling technique applied to both empirical
and artificial-neural-network device models. Experimental results
are given for high electron-mobility transistors and MOSFETs. We
also show that realistic signal excitations can easily be included in
the optimization process.

Index Terms—Large-signal measurements, nonlinear modeling,
optimization.

I. INTRODUCTION

A RECENT development in microwave metrology is a mea-
surement system that not only enables the measurement of

the absolute amplitude of harmonics, and if present, intermodu-
lation products, but also can measure the corresponding phases
[1]–[5]. These so-called “vectorial large-signal measurements”
have triggered researchers worldwide to investigate the impli-
cations of the additional measurement information (being the
phase) on the ease and accuracy of nonlinear model generation.

Nonlinear models of microwave devices are commonly de-
scribed in terms of state functions. These quantities are classi-
cally determined via a small-signal detour based on multibias

-parameter measurements. The first investigated approach of
using vectorial large-signal measurements in nonlinear mod-
eling was to efficiently extract the device’s state functions di-
rectly from these measurements [6]. However, the drawback of
this extraction method is that the obtained model accuracy is
strongly related to the available measurement bandwidth. There-
fore, we developed an advanced nonlinear modeling method
based on optimization [7]. State functions are typically repre-
sented by lookup tables [8], [9] or by parametric models. The
latter are characterized by a number of parameters of which the
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Fig. 1. Intrinsic quasi-static nonlinear FET model.

values can be estimated through optimization. As optimization
is not suited for lookup tables, this method is not applicable to
lookup table models.

Section II describes the straightforward procedure to estimate
the parameters of nonlinear device models from vectorial large-
signal measurements only. In this study, we apply this method
to two types of parametric model types, namely, empirical and
artificial-neural-network (ANN) models. Experimental results
are presented and analyzed in Section III. Finally, conclusions
are drawn in Section IV.

II. NONLINEAR MODEL PARAMETER-ESTIMATION METHOD

A. Optimization Procedure

Fig. 1 represents the nonlinear quasi-static model of an FET,
consisting of four state functions. The assumption of quasi-static
operation is valid up to the frequencies used in the experiments
presented in Section III. Depending on the actually used para-
metric model, the contributions of the extrinsic elements might
or might not be included. If not, they can separately be deter-
mined from -parameter measurements [10], [11].

The classical procedure to determine the parameters of em-
pirical or ANN models is to optimize the functions toward the
dc measured state functions, e.g.,, and/or toward the -pa-
rameter measurement-based state functions, e.g.,or the cor-
responding large-signal . Bandleret al. [12] proposed, as
extension to this procedure, to optimize consistently toward all
available measurements, such as dc, multibias-parameter, and
spectrum analyzer data. Obviously, the additional phase infor-
mation of vectorial large-signal measurements could be incor-
porated in the optimization procedure. However, this requires
special optimization software to ensure consistency because it
is not straightforward to implement this method in standard cir-
cuit simulators. The reason is that it is not possible to optimize
simultaneously toward dc,-parameter, and harmonic-balance
simulations.

0018-9480/02$17.00 © 2002 IEEE



2316 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 10, OCTOBER 2002

Our approach consists of a nonlinear model parameter-esti-
mation procedure based on vectorial large-signal measurements
only [7]. Since these measurements provide both amplitude and
phase information of the spectral components of the traveling
voltage waves, they contain all necessary information. The
advantage of this approach is that only one type of measure-
ments, i.e.,in casuvectorial large-signal measurements, and
only one type of simulation, i.e.,in casu harmonic-balance
analysis, are needed. It is even possible to include “dc”- or
“ -parameter”-like information by choosing the appropriate
operating conditions, e.g., a low input power, when performing
the vectorial large-signal measurements.

We have developed this procedure on a measurement setup,
i.e., the nonlinear network measurement system (NNMS) [4],
which enables to measure simultaneously the currents and volt-
ages at both device ports. The latter implies that the expres-
sions for all four of the state functions can be optimized at once.
The first step of the procedure is to perform a number of mea-
surements, called “experiments.” It is possible to sweep any de-
gree of freedom of the measurement system, like input power,
excitation frequency, dc bias, load impedance, etc. However,
one could focus on particular experiments depending on the ul-
timate application. Next, the measurement data are stored in
Citifile format, which is compatible with the used microwave
circuit simulator (ADS, Agilent Technologies). To allow any
kind of excitation settings, we take as independent variables
the experiment number and frequencies. However, we explic-
itly save the excitation settings in order to automatically per-
form the harmonic-balance simulations at the exact operating
conditions at which the measurements were performed. Subse-
quently, the model parameters are estimated during a single opti-
mization process, executed in the circuit simulator environment,
in which all the experiments are combined. The optimization
goals are expressed in terms of minimizing the difference be-
tween the measured and simulated spectral components, taking
into account all the significant harmonics and, if present, inter-
modulation products.

B. Parametric Model Representations

The proposed parameter-estimation method can be applied to
both empirical and ANN models. We will evaluate and compare
these two approaches in terms of model accuracy and extrapo-
lation properties.

The parameter-estimation procedure is general in the sense
that it can be applied to any empirical nonlinear model of a one-
or two-port microwave device. To demonstrate the applicability
of the method, we used the Chalmers’ empirical nonlinear high
electron-mobility transistor (HEMT) model. The expression for
the drain–source current is based on [13] and the functions
representing the intrinsic bias-dependent capacitances are taken
from [14].

Concerning the ANN, it is not the purpose of this study to
find the most optimal ANN formulation [15], but to show the
principle that the proposed method can be applied to ANNs. We
decided not to define one global ANN, but represented each of
the four device’s state functions by a separate ANN. The reason
is that it is known from device physics that the characteristics

of the currents and charges differ significantly and, hence, this
can be considered as ana priori knowledge-based pruning tech-
nique. In this paper, we will show what level of accuracy can be
obtained with an ANN consisting of only one hidden layer with
five nodes to represent and with three nodes for and

. The gate–source current can be neglected for the ex-
perimental conditions presented in Section III. The ANN accu-
racy can easily be increased by adding additional hidden layers
and nodes, but at the cost of a lower model generation speed.
The independent input variables are the terminal voltages
and . The functional description is of the form

(1)

where is the number of nodes and where, , , and
are the parameters to be determined. We choose this particular
functional description because the is smooth and its
limits are well defined. This is contrary to an exponential-like
expression, which might give rise to convergence problems
when the nonlinear model is being evaluated by the iterative
harmonic-balance analysis. The ANN training was not per-
formed in a separate software program, but was also executed
by the optimizer available in the circuit simulator.

III. EXPERIMENTAL RESULTS

To illustrate the parameter-estimation procedure, we present
and analyze experimental and modeling results on transistors
fabricated with different technologies and excited at several op-
erating conditions.

The first example is the Chalmers model applied to a GaAs
pseudomorphic high electron-mobility transistor (pHEMT).
The device is operated in class B, while the input power is
swept from 20.4 to 3.4 dBm. All the model parameters are
simultaneously optimized toward these measurements. Fig. 2
compares the measured and simulated time-domain waveform
of [see Fig. 2(a)] and of [see Fig. 2(b)] as a
function of the corresponding time-domain waveform of
at a high input power. This figure clearly shows a very good
agreement between measurements and modeling results and,
hence, indicates a high model accuracy.

Fig. 3 shows excellent agreement between the measured and
modeled versus by applying the ANN model to
an nMOS transistor operated in class A. This example demon-
strates that the proposed procedure is not limited to HEMTs, but
applicable to one- and two-port nonlinear microwave devices in
general.

Furthermore, complicated and realistic operating conditions
can easily be included in the optimization procedure. Examples
are load–pull measurements [7] and two-tone excitations. The
latter is demonstrated on an InP lattice-matched (LM) HEMT.
A single-tone continuous wave (CW) signal is applied to the
gate and a single-tone CW signal at a different fundamental
frequency is applied to the drain. Fig. 4 compares the measured

with the Chalmers model results and ANN results, respec-
tively. Both model types represent the modulated well.
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(a)

(b)

Fig. 2. Measured (�) and Chalmers modeled (—) (a)I (t) and (b)I (t)
versusV (t) of a 0.2�m � 100 �m GaAs pHEMT (V = �0:5 V,
V = 1:5 V, f = 3:6 GHz,P = �3:4 dBm).

Fig. 3. Comparison of the measured (�) and neural-network modeled (—)
I (t) versusV (t) of a 0.2�m� 50�m nMOS (V = 0:9 V, V =
1:8 V, f = 0:9 GHz,P = 3:4 dBm).

There is no significant difference in model accuracy between
the Chalmers model and the limited-size ANN.

Fig. 5 presents the results of both the Chalmers and ANN
models when extrapolated toward a dc-bias condition that was
not included in the optimization. We notice that the Chalmers
model is able to represent very well the device’s characteristics
at this particular operating condition. On the contrary, the ANN
only approximates the general behavior. The reason is that the
ANN is a black-box model and, therefore, not suited for extrap-
olation. It will, however, behave well at operating frequencies
different from the frequencies used in the training process since
the ANN definition (see Section II-B) explicitly makes the dis-
tinction between charge and current sources. The extrapolation
capability of the Chalmers model toward other dc biases is sig-
nificantly better since the underlying equations are related to the
device physics. By including operating conditions closer to the
one used in Fig. 5, the accuracy of the ANN model improves.

(a)

(b)

Fig. 4. Comparison of the measured (�), (a) Chalmers (—), and (b) ANN
modeled (—)I (t) of a 0.2�m � 100 �m InP LM HEMT excited by a
two-tone signal (V =�0:1 V, V = 1:2 V, f = 4:2 GHz,f =
4:8 GHz,a = �3:9 dBm,a = 2:4 dBm,�(a )� �(a ) = �95 ).

(a)

(b)

Fig. 5. Comparison of the measured (�), (a) Chalmers (—), and (b) ANN
extrapolated (—)I (t) of a 0.2�m� 100�m InP LM HEMT excited by a
two-tone signal (V = �0:3 V, V = 0:6 V).

When there is interest to increase the accuracy and operating
range to be covered, ANNs have the advantage that it is straight-
forward to increase the number of hidden layers and nodes in
order to obtain these goals. In the case of empirical models,
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the number of parameters is mostly fixed and possible exten-
sions are limited. The consequence is that the obtained accu-
racy is strongly related to the physical phenomena described
by the empirical expressions. Therefore, extrapolations toward
“smooth” operating conditions will, in general, yield good re-
sults, but extrapolations toward “extreme” operating conditions
will be worse.

Finally, the parameter-estimation time depends on the soft-
ware used, but this is, in general, less for empirical models. Typ-
ically, an empirical model has significantly less model param-
eters than an ANN, e.g., 18 compared to 44 for the modeling
results presented in this paper.

It is clear that the choice between an empirical model or an
ANN strongly depends on the envisaged application.

IV. CONCLUSIONS

We have shown that using only full two-port vectorial large-
signal measurements is sufficient to accurately estimate the pa-
rameters of nonlinear microwave device models. The developed
straightforward quasi-automatic procedure has been applied to
empirical and ANN models, and has been successfully demon-
strated on HEMTs and nMOS devices. Finally, we pointed out
that including realistic operating conditions in the optimization
process broadens the model validity range.
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